Towards Interactive Visualization Support for
Pairwise Testing Software Product Lines

Roberto E. Lopez-Herrejon
Systems Engineering and Automation
Johannes Kepler University Linz, Austria
Email: roberto.lopez@jku.at

Abstract—Software Product Lines (SPLs) are families of
related software products. SPL practices have proven substantial
technological and economical benefits such as improved software
reuse and reduced time to market. Software testing is a key
development activity in SPLs, and it is uniquely challenging
because of the usually large number of feature combinations
present in typical SPLs. Pairwise testing is a combinatorial
testing technique that aims at selecting products to test based
on the pairs of feature combinations such products provide. Our
previous work on evolutionary approaches for SPL testing and
their comparative analysis has yielded a large amount of data that
prompted us to explore ways by which to convey and represent
this information. In this paper we present our early results in
this effort. We describe three basic visualization applications to
pairwise testing and highlight some of the open questions that we
foresee. But most importantly, our driving goal is both to raise
the awareness of the visualization problems in this area and to
spark the interest of the software visualization community.

I. INTRODUCTION

Software Product Lines (SPLs) are families of related
software products, where each product provides a unique com-
bination of features (i.e. increments in program functionality
[1]). SPL practices have an extensive literature that attests
to the substantial benefits they provide (e.g. [2]). A feature
model (FM) represents all the possible feature combinations
(typically a large a number) available in an SPL. The number
of combinations poses a unique set of challenges because
testing each individual product may not be technically or
economically feasible.

Surveys and mapping studies on SPL testing [3], [4],
attest to the increasing interest in testing within the SPL
community. Among the SPL testing approaches are those based
on Combinatorial Interaction Testing (CIT). Their premise is
to select a group of products where faults due to feature
interactions are more likely to occur [5]. In CIT the focus
has been mostly on pairwise interactions, meaning that these
techniques consider the four possible combinations between
any two features'. The combination of features in a product
of an SPL determines the set of pairwise feature combinations
that the product covers. Pairwise SPL testing aims to select a
set of products such that their feature combinations cover the
possible combinations of all interactions between two features
according to the feature model of the SPL. This set is called
a covering array.

IFor A and B features: both selected, both not selected, A selected and B
not, A not selected and B selected.

978-1-4799-1457-9/13/$31.00 ©2013 IEEE

Alexander Egyed
Systems Engineering and Automation
Johannes Kepler University Linz, Austria
Email: alexander.egyed @jku.at

| GpL

-— _e—— ~— — o
Driver | GraphType | [weight | [Search] Algorithms
Bsnr..r:mark | Directed || Undiracted | DFS i BFs
CTC examples: Num || €C Cycle | | Shortest

Nurm requires Search SCC requires DFS

CCrequires Undirectad Cyele requires DFS

CC requires Search Kruskal requires LUindirected Kruskal excludes Prim

SCC requires Directed Kruskal requires Weight Shartest requires Directed

Prim requires Undirected Prire reguires Weight Shartest requires Weight

Fig. 1. Graph Product Line Feature Model

A recent survey of SPL use in industry showed that
poor information visualization is an important and recurring
problem [6]. Visualization techniques have been applied within
the SPL context mostly for product configuration or in sup-
porting program comprehension. The techniques used are not
widespread and for the most part very fundamental. In this
paper we describe three basic visualization applications to
pairwise testing and highlight some of the open questions that
we foresee. But most importantly, our driving goal is both
to raise the awareness of the visualization problems in this
area and to spark the interest of the software visualization
community.

II. FEATURE MODELS AND RUNNING EXAMPLE

A feature model (FM) represents all the possible feature
combinations available in an SPL [7]. Feature models have
become a de facto standard for modelling the common and
variable features of an SPL and their relationships collectively
forming a tree-like structure. The nodes of the tree are the
features which are depicted as labelled boxes, and the edges
represent the relationships among them. We use the Graph
Product Line (GPL) [8], a standard SPL of basic graph
algorithms, as our running example. Figure 1 shows the feature
model of GPL.

A product in GPL has feature GPL (the root of the feature
model) which contains its core functionality, a driver program
(Driver) that sets up the graph examples (Benchmark) to
which a combination of graph algorithms (Algorithms) are
applied. The types of graphs (GraphType) can be either
directed (Directed) or undirected (Undirected), and
can optionally have weights (Weight). Two graph traversal
algorithms (Search) are available: either Depth First Search
(DFS) or Breadth First Search (BFS). A product must pro-

vide at least one of the following algorithms: numbering of
nodes in the traversal order (Num), connected components
(CC), strongly connected components (SCC), cycle check-
ing (Cycle), shortest path (Shortest), minimum spanning
trees with Prim’s algorithm (Prim) or Kruskal’s algorithm
(Kruskal).

In a feature model, each feature (except the root) has one
parent feature and can have a set of child features. A child
feature can only be included in a feature combination if its
parent is included as well. The root feature is always included.
In feature models there are four types of feature relations:

e Mandatory features are depicted with a filled circle
and are selected whenever its respective parent feature
is selected. For example, features Algorithms and
Benchmark.

e Optional features are depicted with an empty circle
and may or may not be selected if its respective parent
feature is selected. An example is feature Search.

e Exclusive-or relations are depicted as empty arcs
crossing over a set of lines connecting a parent
feature with its child features. They indicate that
exactly one of the child features must be selected
whenever the parent feature is selected. For exam-
ple, if feature GraphType is selected, then either
feature Directed or feature Undirected must be
selected.

e [Inclusive-or relations are depicted as filled arcs cross-
ing over a set of lines connecting a parent feature
with its child features. They indicate that at least
one of the features in the inclusive-or group must
be selected if the parent is selected. If for instance,
feature Algorithms is selected then at least one
of the features Num, CC, SCC, Cycle, Shortest,
Prim, and Kruskal must be selected.

Besides the parent-child relations, features can also relate
across different branches of the feature model with the so
called Cross-Tree Constraints (CTC). Figure 1 shows the 13
CTCs of GPL’s feature model (see [8]) in a textual manner.
It should be noted though that there is not a standard vi-
sual representation of CTCs. For instance, Num requires
Search means that whenever feature Num is selected, feature
Search must also be selected. As another example Kruskal
excludes Prim means that these two features cannot ap-
pear together in any product of the product line. These con-
straints, as well as those implied by the hierarchical relations
between features, are usually expressed using propositional
logic (in particular Conjunctive Normal Form clauses) and
analysed with SAT solvers. For further details refer to [9].

III. COMBINATORIAL INTERACTION TESTING IN SPLS

Combinatorial Interaction Testing (CIT) is a testing ap-
proach that constructs samples to drive the systematic testing
of software system configurations [10]. When applied to SPL
testing, the idea is to select a representative subset of products
where interaction errors are more likely to occur rather than
testing the complete product family [10]. In this section we
provide the basic terminology of CIT for SPLs?.

2Definitions based on [9] and [11].

Definition 1: Feature List (FL) is the list of features in a
Sfeature model.

Definition 2: A feature set, also called product in SPL, is
a 2-tuple [sel,sel] where sel and sel are respectively the set
of selected and not-selected features of a member product. Let
FL be a feature list, thus sel, sel C FL, sel N sel = 0, and
sel U sel = FL. The terms p.sel and p.sel respectively refer to
the set of selected and not-selected features of product p.

Definition 3: A t-set ts is a 2-tuple [sel,sel] representing a
partially configured product, defining the selection of t features
of the feature list FL, i.e. ts.sel U ts.sel C FL A ts.sel N
ts.sel =0 A |ts.sel Uts.sel| = t. We say t-set ts is covered
by feature set fs iff ts.sel C fs.sel N ts.sel C fs.sel.

Definition 4: A t-set ts is valid in a feature model fm if
there exists a valid feature set £s that covers ts.

Definition 5: A t-wise covering array tCA for a feature
model fm is a set of valid feature sets that covers all valid
t-sets denoted by fm. We also use the term test suite in this
paper to refer to a covering array.

Most of the research on CIT for SPLs has focused on
pairwise testing, i.e. t=2. Some of the techniques used are sim-
ulated annealing [12], evolutionary algorithms [13], constraint
programming [14], and greedy ad hoc algorithms [11]. In the
following section we illustrate these concepts and describe how
our ongoing work on software visualization tries to address
some of the challenges SPL pairwise testing entails.

IV. VISUALIZING SPL PAIRWISE TESTING

Let us first explain the core concepts of pairwise test-
ing. From the feature model in Figure 1, a valid 2-set is
[{Driver}, {Prim}]. It is valid because the selection of
feature Driver and the non-selection of feature Prim do
not violate any constraints. As another example, the 2-set
[{GraphType, Search}, 0] is valid because from the
feature model it can be seen that both features can be selected
without violating any constraint. Notice however that the 2-
set [}, {Directed, Undirected}] is not valid. This is
because feature GraphType is present in all the feature sets
(mandatory children of the root) so always either Directed
or Undirected must be selected. The covering array of GPL
is then a list of products that covers all the possible 2-set, a
total of 418. This list of products should be selected from the
73 possible valid products of GPL.

To help us experiment with the visualization tasks for
SPL testing, we have developed a standalone tool prototype
that receives data from our framework for covering array
computation and comparison, and generates D3.js code for
visualization on web pages [15]. We decided to use this tool
as it is an easy entrance point for software visualization, and
has a rich set of visualization techniques.

The first challenge was how to visualize covering arrays.
For this purpose we have tried a tabular representation where
each row represents a product of the covering array and each
column represents each feature of the feature model. Features
are colored, so an empty (blank) entry in the row of a product
means that that feature is not selected in that product. Figure 2
shows an example of a covering array of GPL computed with

epl
driver

benchmark

graph-type

directed

undirected

waight

search
bfs
dfs

=R - R, B S TR N]

-
@

algorithms

=
=

num

-
R

cC

scE

cycle

prim
kruskal
shortest

Fig. 2. Covering array example of GPL

a greedy approach [11]3. In this figure it is easy to see that
the first four features are always selected, as well as feature
Algorithms. As another example, consider checking how
the 2-set [{GraphType, Search} is covered. This can be
done by simply inspecting the columns of both features. In
our example almost all the products (except products 1 and 4)
cover this 2-set.

The second challenge was to depict the actual 2-set cov-
erage of the covering array. For this case we decided on
using a combination of two techniques, bubble charts and
heat maps [15]. We define one bubble for each of the 2-
sets that need to be covered whose size and shade of color
blue depended on the number of products of the covering
array that covers each pair. Figure 3 shows our covering array
example. The larger number was 13, meaning that all the
products of the covering array covered the pair, for instance

3We depict the names of the features in lower case for readability.

Fig. 3. Bubble and heatmap representation of covering array of GPL

Fig. 4. Tree map representation of coverage increment for GPL

[{GPL,Driver}, @1, shown towards the center of the
figure. By hovering over the bubbles, the users can see the
2-set names and the number of products they are covered by.

In the comparative analysis of testing approaches it is quite
common to measure the increment in coverage that each new
product of the covering arrays contributes. In other words,
how many new 2-sets, over all the 2-sets, each product adds
that have not been covered before. The third challenge we
address was how to depict this metric. We experimented with
percentage doughnuts but given that most of the times the
increment percentages of the last products are usually small,
their corresponding slices and labels were not intelligible. We
experimented then with tree maps as shown in Figure 4.

V. SOFTWARE VISUALIZATION AND SPL

In this section we present an overview of the pieces of work
most related to ours. Based on their focus, we can identify
two main trends on the application of visualization techniques
to SPLs: i) product configuration which is the process of
creating a specific product of a product line, and ii) program
comprehension which refers to the process engineers follow to
perform, among others, software maintenance tasks.

In product configuration, one of the earliest works is
by Nestor et al. [16]. They present a tool called VISIT-
FC that provides basic visualization techniques such as color
coding and incremental feature model browsing for supporting
the users to configure large feature models as well as to
understand design decisions such as feature costs. For this
they depict features in different sizes or colors. Pleuss et al.
present a more recent and small survey of the application
of information visualization to SPL configuration [17]. They
report that the most commonly used techniques have been
clustering, decision trees, tree maps, cone trees, tables, and
flow maps, and provide a short analysis of their advantages
and drawbacks for product configuration. Furthermore, they
outline some promising techniques, such as hyperbolic trees or
space trees, and their research agenda. In a more recent work,
Pleuss et al. [18] present the S2T2 Configurator. This tool
displays feature models in a vertical layout and depicts CTCs
as arcs between features depicted as nodes in a tree. Features
can have different colors, sizes and icons to express the stage
of the configuration process the user is at as well as to denote
any inconsistencies detected or problems found. Nohrer et al.
have developed an interactive configuration tool called C02
that allows users to incrementally make decisions [19]. At each
step, the sizes and the colors of both the already selected nodes

and those decisions that can still be taken are respectively
adjusted to denote the decisions made and the likelihood that
taking a decision will lead to a valid configuration in the
shortest number of steps. In contrast with our work, all these
research efforts are primarily focused on product configuration.

In program comprehension, the work by Apel et al. [20]
presents a tool called FeatureVisu that uses clustering layouts
to depict feature cohesion in the code base of SPLs. Their
goal was to analyze this property in several SPL cases studies
both implemented with preprocessor or advanced modularity
approaches. The work by Feigenspan et al. [21] enhances
pre-processor based software product lines with colors that
denote which feature a line of code belongs to. They use
a flexible and adaptable coloring scheme that exploits the
fact that at any given moment only very few features appear
together (or interact) in the code, so only a few colors are
simultaneously needed which makes using colors an appealing
option. Their field study showed that users performed better
for some tasks when using colors and overall preferred this
form of visualization. In contrast with our work, we do not
focus on the source code and its mapping to feature models.

VI. SOME OPEN QUESTIONS

We believe our early work just scratches the surface of
the potential applications of visualization techniques for SPL
testing. In this section we sketch some of the open questions
our future work aims to address.

First and foremost is the issue of scalability. It is not
uncommon to find industrial SPLs with hundreds or even thou-
sands of features [22]. This fact poses the question: What is
the right combination of pre-attentive properties most suitable
for SPL testing? Changes in color or size might not be enough.
A possibility is exploring other metrics (e.g. commonality [9])
to help the visualization.

Our ultimate goal is to provide users the capability to
select, apply and analyze the results of SPL testing. To achieve
that goal it is important to provide meaningful and interactive
relationships between the different visualizations. This sparks
the question: What are the appropriate interaction techniques
for such tasks?

As with any other visualization work, it is important to
assess the benefits and limitations of the techniques in real
application scenarios. We plan to conduct experimental studies
with both students and software professionals along the lines
proposed by Wettel et al. [23].

ACKNOWLEDGEMENTS

This research is partially funded by the Austrian Science
Fund (FWF) project P25289-N15 and Lise Meitner Fellowship
M1421-N15.

REFERENCES

[1] P Zave, “Faq sheet on feature

http://www.research.att.com/ pamela/faq.html.
[2] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

interaction,”

[3] E. Engstrom and P. Runeson, “Software product line testing - a
systematic mapping study,” Information & Software Technology, vol. 53,
no. 1, pp. 2-13, 2011.

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor,
E. S. de Almeida, and S. R. de Lemos Meira, “A systematic mapping
study of software product lines testing,” Information & Software Tech-
nology, vol. 53, no. 5, pp. 407-423, 2011.

C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, pp. 11:1-11:29, Feb. 2011. [Online].
Available: http://doi.acm.org/10.1145/1883612.1883618

T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
and A. Wasowski, “A survey of variability modeling in industrial
practice,” in VaMoS, S. Gnesi, P. Collet, and K. Schmid, Eds. ACM,
2013, p. 7.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software Engi-
neering Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-
90-TR-21, 1990.

R. E. Lopez-Herrejon and D. S. Batory, “A standard problem for
evaluating product-line methodologies,” in GCSE, ser. Lecture Notes
in Computer Science, J. Bosch, Ed., vol. 2186. Springer, 2001, pp.
10-24.

D. Benavides, S. Segura, and A. R. Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Inf. Syst., vol. 35,
no. 6, pp. 615-636, 2010.

M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction test
suites for highly-configurable systems in the presence of constraints:
A greedy approach,” IEEE Trans. Software Eng., vol. 34, no. S, pp.
633-650, 2008.

M. F. Johansen, @. Haugen, and F. Fleurey, “An algorithm for generating
t-wise covering arrays from large feature models,” in SPLC (1), E. S.
de Almeida, C. Schwanninger, and D. Benavides, Eds. ACM, 2012,
pp. 46-55.

B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating improvements
to a meta-heuristic search for constrained interaction testing,” Empirical
Software Engineering, vol. 16, no. 1, pp. 61-102, 2011.

C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. L. Traon, “Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test suites for large software product
lines,” CoRR, vol. abs/1211.5451, 2012.

A. Hervieu, B. Baudry, and A. Gotlieb, “Pacogen: Automatic generation
of pairwise test configurations from feature models,” in ISSRE, T. Dohi
and B. Cukic, Eds. IEEE, 2011, pp. 120-129.

M. Bostock, “D3.js website,” 2013.

D. Nestor, S. Thiel, G. Botterweck, C. Cawley, and P. Healy, “Apply-
ing visualisation techniques in software product lines,” in SOFTVIS,
R. Koschke, C. D. Hundhausen, and A. Telea, Eds. ACM, 2008, pp.
175-184.

A. Pleuss, R. Rabiser, and G. Botterweck, “Visualization techniques for
application in interactive product configuration,” in SPLC Workshops,
1. Schaefer, I. John, and K. Schmid, Eds. ACM, 2011, p. 22.

A. Pleuss and G. Botterweck, “Visualization of variability and config-
uration options,” STTT, vol. 14, no. 5, pp. 497-510, 2012.

A. Nohrer and A. Egyed, “C20 configurator: a tool for guided decision-
making,” Autom. Softw. Eng., vol. 20, no. 2, pp. 265-296, 2013.

S. Apel and D. Beyer, “Feature cohesion in software product lines: an
exploratory study,” in /CSE, R. N. Taylor, H. Gall, and N. Medvidovic,
Eds. ACM, 2011, pp. 421-430.

J. Feigenspan, M. Schulze, M. Papendieck, C. Kistner, R. Dachselt,
V. Koppen, M. Frisch, and G. Saake, “Supporting program comprehen-
sion in large preprocessor-based software product lines,” IET Software,
vol. 6, no. 6, pp. 488-501, 2012.

T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “Vari-
ability modeling in the real: a perspective from the operating systems
domain,” in ASE, C. Pecheur, J. Andrews, and E. D. Nitto, Eds. ACM,
2010, pp. 73-82.

R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: a con-
trolled experiment,” in /CSE, R. N. Taylor, H. Gall, and N. Medvidovic,
Eds. ACM, 2011, pp. 551-560.

R. N. Taylor, H. Gall, and N. Medvidovic, Eds., Proceedings of the
33rd International Conference on Software Engineering, ICSE 2011,
Waikiki, Honolulu , HI, USA, May 21-28, 2011. ACM, 2011.

